Performance of a Distributed Task Allocation Algorithm in a Realistic Network Environment

Matthew Rantanen¹, Dr. Nicholas Mastronarde¹, Dr. Karthik Dantu²
Departments: ¹Electrical Engineering, ²Computer Science and Engineering

Objective
- Allocate a set of tasks to a set of agents where no two agents are assigned the same task
- Attempt to optimize the overall reward obtained from agents being assigned a specific assignment of tasks
- Evaluate the performance of the Asynchronous Consensus Based Bundle Algorithm (ACBBA) [1] in a lossy network environment

Testing
- Evaluated the performance of the ACBBA in a perfect communication scenario to determine optimal performance
- Evaluated the ACBBA performance using the 802.11b broadcast mechanism for communication in the UB Airborne Networking Communications Testbed [2]
- Static routing used for each node in the network

Algorithm Description
- Agents continuously loop through three main phases:
 - Bundle Construction Phase: Agents bid on tasks in order to place tasks in their set of assigned tasks (bundle)
 - State Exchange Phase: Agents exchange messages regarding task bids and bid winners
 - Conflict Resolution Phase: Agents determine which agent had the highest bid and adjust their bundles based on received information and their current internal state
 - The highest bidder for a task is assigned that specific task
 - Each message only contains info about a single task
 - Silence on the network is interpreted as convergence

Results
- An increase in agents resulted in an increased occurrence of the same task being assigned to multiple agents
- An increase in repeated tasks is interpreted as a decrease in performance
- An increase in agents lead to more packet loss in the network
- Packet loss was mostly independent of the total number of tasks available for assignment
- Increased packet loss resulted in decreased performance
- Packet loss resulted in lost messages needed for consensus and accurate conflict resolution

Conclusion
- An increased amount of transmitting nodes in the network resulted in wireless interference that prevented the algorithm from properly communicating and resulted in degraded performance
- A lack of methods for ensuring message delivery resulted in a loss of critical information necessary for proper performance that lead to a decrease in performance

Future Work
- Characterize the ACBBA when reliable communication methods are used for packet delivery
- Test the algorithm’s performance when deployed on physical drones in a mobile ad-hoc network
- Test the performance of the algorithm when different dynamic routing protocols are used, such as the OLSR and AODV protocols

References

This material is based upon work funded by the US Air Force Research Laboratory in Rome, NY, USA