Surveying the Vulnerability of the Maritime Cargo Pathway to Nuclear Smuggling

Sarah Schwartz, Kate Lukasiewicz, Dr. Jun Zhuang

Department of Industrial and Systems Engineering, School of Engineering and Applied Sciences

Motivation
- Radiological/nuclear attacks are some of the greatest threats to United States security
- About 95% of cargo enters the United States through containerized maritime cargo pathways
- Through a comprehensive analysis of incident data and current practices, **vulnerability in the containerized shipping pathway can be identified**

Useful Definition: Orphan nuclear source (ONS) - any amount of nuclear material that has fallen out of proper regulatory control [1]

Background

The Maritime Transportation Security Act 2002; Implements security assessments; plans for personnel and cargo security [2]

Trade Act 2002; Requires manifests for cargo to be received one day before inbound shipments leave port for US [3]

Container Safety and Accountability for Every Port (SAFE) Act 2002; Promotes ATS to calculate risk profiles, stations CBP and allies at foreign ports [4]

- ONS’s can be used nefariously if obtained by adversaries
- US strategy: interdict nuclear smuggling during transport (View relevant legislation above)
- Special attention is paid to ports through use of active (physical search) and passive (radiation portal monitors, radioisotope identification devices) methods
- Detection of in-transport ONS’s in the US between 2013-2016 (below) can be tracked by CNS data

Methods

Use a data-driven approach to (1) find plausible smuggling routes in order to (2) weigh tradeoffs between strategies used by adversaries.

- Use of ONS location data points to likely smuggling pathways from origin to destination (above)
- High concentration of US incidents is due to the country’s thorough reporting
- In-transport ONS reports are shown to follow water routes (below)

Location of Nuclear Material Discovered amidst Transport

Conclusion/Discussion

Maritime Container
- No routing or boating skills required, which may be difficult or time consuming to learn
- Reliable delivery
- Large packaging units, thus units can contain materials to shield the radiation from detection, such as cement or lead
- All containers are passively scanned for radiation at US ports

Private Vessel
- Can potentially bypass port scanning
- Vessel-mounted nuclear material scanners have been successfully implemented at some non-commercial ports
- Requires advanced oceanic knowledge and boating experience
- US CGBP monitors water for small, suspicious boats daily

- Adversaries make two decisions (1) vessel type (above) and (2) port of entry (below)
- Small ports are less fortified with passive nuclear material scanners due to low traffic
- While strong legislation is in place to aid the DHS and other enforcement bodies, the strength of the execution of these laws currently varies
- Maritime containers appear the most attractive method

References

University at Buffalo
University Honors College