Endocannabinoid regulation of incentive cues

Ajay N. Baindur¹, Ken T. Wakabayashi¹,², Karie Chen¹, and Caroline E. Bass¹
¹Department of Pharmacology and Toxicology, ²Research Institute on Addictions, University at Buffalo, SUNY

Introduction
- Previously neutral cues that are repeatedly paired with a reward can become powerful incentives for reward seeking.
- We have recently shown that activating VTA GABA neurons attenuates responding to incentive cues (ICs).
- Others have shown that endocannabinoids (eCBs), particularly 2-arachidonyl glycerol (2-AG), enhance dopamine release during cue presentation and induce reward seeking by inhibiting VTA GABA neurons.
- Presumably, these effects occur via retrograde transmission of 2-AG from dopamine neurons, which activates CB₁ receptors on GABA interneurons, leading to decreased GABA release and less GABA inhibition of the postsynaptic dopamine neurons (disinhibition).
- We hypothesize that blocking the CB₁ receptor will decrease responding to ICs by attenuating VTA GABA disinhibition, while enhancing 2-AG will increase responding by increasing disinhibition.
- Understanding the mechanisms contributing to incentive cue (IC)-induced reward seeking may reveal unique treatment targets for addiction.

Endocannabinoid System

Methods: IC Task

Results

Rimonabant

- Decrease in IC responding
 - ** p < 0.01 compared to veh
 - ** p < 0.05 compared to veh

- Decrease in motivation for IC
 - * p < 0.05 compared to veh

- Motivation for reward not influenced

Future Aims
- Microinfusions to determine if these effects are VTA specific.
- Test additional inhibitors (e.g., CB2 receptor antagonists), which has recently been found in the brain.
- Examine the role of anandamide and FAAH.

Funding
- K.T.W. was supported by the SUNY Brain Network of Excellence Post-doctoral Fellow program and the RIA Research Training on Alcohol Etiology and Treatment Post-doctoral Fellow program.

Summary
- Rimonabant dose dependently decreased responding to ICs
 - increases in nosepoke latency indicate that the reinforcing efficacy of the IC is decreased
 - no change in latency for the reward
 - together these data indicate that rimonabant affects motivation for the IC but not the primary reinforcer

- reward cup entries after rimonabant administration was proportional to the number of rewards acquired
 - activating VTA GABA neurons increased the ratio of cup entries to rewards obtained
 - may indicate that other brain regions are involved in rimonabant’s effect on IC responding

- MJN-110 produced an overall increase in responding to ICs of different sucrose volumes, though more subjects are needed.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Class</th>
<th>Activity</th>
<th>Hypothesized Effect on GABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimonabant</td>
<td>CB antagonist</td>
<td>blocks eCBs</td>
<td>increase</td>
</tr>
<tr>
<td>MJN110</td>
<td>MAGL inhibitor</td>
<td>enhances 2-AG</td>
<td>decrease</td>
</tr>
<tr>
<td>PF-3845</td>
<td>FAAH inhibitor</td>
<td>enhances AEA</td>
<td>no effect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Class</th>
<th>Activity</th>
<th>Hypothesized Effect on GABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimonabant</td>
<td>CB antagonist</td>
<td>blocks eCBs</td>
<td>increase</td>
</tr>
<tr>
<td>MJN110</td>
<td>MAGL inhibitor</td>
<td>enhances 2-AG</td>
<td>decrease</td>
</tr>
<tr>
<td>PF-3845</td>
<td>FAAH inhibitor</td>
<td>enhances AEA</td>
<td>no effect</td>
</tr>
</tbody>
</table>