ABSTRACT

Tuberculosis is a prominent global health concern. New treatments are needed to overcome problems associated with drug resistance, treatment length, and patient adherence. Nanoparticles can reduce side effects associated with systemic drug distribution and improve intracellular drug concentrations. Rifampin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were synthesized by a water-oil emulsion technique and stirred overnight to remove the oil phase. Release of rifampin from nanoparticles was measured using a dialysis membrane and continuously monitored using a flow cell equipped spectrophotometer. Increasing the PLGA concentration increased nanoparticle size and encapsulation efficiency. Decreasing the volume of the second phase water had little effect on size, but increased encapsulation efficiency. Cellular uptake of nanoparticles by macrophages occurred within 24 h. This research aimed to further our understanding of the most effective way to fabricate rifampin loaded PLGA nanoparticles.

METHODS

MATERIALS

- Rifampin is a first-line TB therapeutic.
- Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable FDA approved polymer. PLGA forms the hydrophobic core of the NP. PLGA is anionic at physiologic pH.
- Chitosan (CS) is a linear polysaccharide not associated with seafood allergies. Chitosan forms the hydrophilic shell of the NP. Chitosan is cationic at physiologic pH.

RESULTS

RESULTS (cont’d)

DISCUSSION

- Rifampin is a first-line TB therapeutic.
- Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable FDA approved polymer. PLGA forms the hydrophobic core of the NP. PLGA is anionic at physiologic pH.
- Chitosan (CS) is a linear polysaccharide not associated with seafood allergies. Chitosan forms the hydrophilic shell of the NP. Chitosan is cationic at physiologic pH.

HYPOTHESES

- Rifampin is a first-line TB therapeutic.
- Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable FDA approved polymer. PLGA forms the hydrophobic core of the NP. PLGA is anionic at physiologic pH.
- Chitosan (CS) is a linear polysaccharide not associated with seafood allergies. Chitosan forms the hydrophilic shell of the NP. Chitosan is cationic at physiologic pH.

REFERENCES

This project was supported in part by the University of Rochester Center for AIDS Research grant P30AI079630 and the Research School of Medicine and Dentistry. Additional support was received from the following grants: grant U01AI144298 and R56AI144298 from the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID). KR is supported by Ruth L. Kirschstein National Research Service Award (NRSA) Institutional Research Training Grant (T32GM007170). The content presented in this paper is solely the responsibility of the authors and does not necessarily represent the official views of National Institute of Allergy and Infectious Diseases, or the National Institutes of Health. Further financial and training support was provided by the College of Science and Technology Entry Program (CSTEP) and Center for Undergraduate Research and Creative Activities (CURCA).