Synthesis of a Mechanically Active Gadolinium Chelate

Patricia Johnson*, Cameron Brown*, Stephen Craig°

*State University of New York at Buffalo Department of Chemistry, °Duke University Department of Chemistry

Goals
A) Design a metal complex as an effective mechanophore that changes color under applied force as a colorimetric tension sensing system.
B) Synthesize the target mechanophore and perform mechanical testing.
A successful project would provide proof of concept for a totally new class of mechanophore.

Future Work
Upon successful synthesis of the target compound, it will be incorporated into a hydrogel as a load-bearing cross-linker which will then be mechanically strained.

Incorporation of this complex into a different polymer, for example one that had dangling amine groups, could facilitate cross-bridging upon the application of force. The goal of this would be to create a self-strengthening material.

Acknowledgements
Funding for this project was awarded by the National Science Foundation through Grant #DMR-1121107. Special thanks to Dr. Stephen Craig and Cameron Brown.

References

Project Design
Problems with most current systems:
Scissile, irreversible, water intolerant, high activation force

Organometallic complexes could solve these problems:
Metal-ligand bonds are weaker than organic covalent bonds, requiring less energy (force) to activate

Magnetic Resonance Imaging (MRI) contrast agents provide an excellent chelate design which can be modified to act as a mechanophore.

Strategy:
1. Complex incorporated into polymer backbone
2. Force applied to bulk polymer
3. Force transferred from polymer to complex
4. Parts of ligand dissociate
5. Solvent (water) coordinates in their place
6. Change in coordination sphere = change in color

Reaction conditions optimized and monitored by 1H NMR.Absorbance, excitation and emission data will be collected on the final complex by UV-Vis spectroscopy.

Synthesis based off sources 5,6.


Modifications:
• Different metal5; Europium (Eu), Terbium (Tb)
• Sensitizing pendant on ligand7

Incorporation of this complex into a different polymer, for example one that had dangling amine groups, could facilitate cross-bridging upon the application of force. The goal of this would be to create a self-strengthening material.