The Acute Effects of Shiitake and White Button Mushroom Intake on Postprandial Lipemia and Lipid Oxidation Following a High-Fat Meal

Robak TJ¹, Morris MJ², Williams BT³, Marsales H４, Horvath PJ².

1 - School of Medicine and Biomedical Sciences, 2 - Department of Exercise and Nutrition Sciences, 3 - Department of Physiology and Biophysics, University at Buffalo – Buffalo, NY

Background

- Mushroom consumption is known to have an impact on postprandial cholesterol clearance and oxidative stress. The cholesterol effect is likely because they contain sterol-like compounds and the antioxidants in mushrooms may reduce the oxidative stress.
- The current trend of rising obesity levels and poor dietary choices have led to an increase in the incidence of chronic diseases in the United States, including cardiovascular disease (CVD) and dyslipidemia.
- Mushrooms contain high levels of fungisterols which are thought to be the primary mechanism for improved cholesterol clearance and oxidation.
- However, there have not been studies considering the varying impacts of different varieties of mushrooms on cholesterol clearance or oxidative stress.
- Important bioactive compounds currently being extracted from these mushrooms which are thought to have lipid lowering properties are B-glucans, Eritadenine, Lentinan, and Ergosterol.
- Ergothioneine, an anti-oxidant in mushrooms, may have a role in reductions of post prandial lipid oxidation.
- White button mushrooms (WB) have 0.21 mg/g dry weight, compared to Shiitake mushrooms (S) 1.98 mg/g dry weight.

Objectives

1. Consumption of S and WB with a high fat meal may acutely affect circulating cholesterol levels.
2. Consumption of S and WB with a high fat meal may acutely affect circulating lipid levels.
3. Consumption of S and WB with a high fat meal may acutely affect lipid oxidation of circulating lipids following a high fat meal.

Methods

All subjects will receive a meal with only meat to serve as a control to test for a ‘normal’ lipemic response. Participants will then be randomized into receiving either WB then S (Group 1) or S then WB (Group 2) treatments for their second and third lab visits. Subjects will maintain normal dietary habits (no caffeine or alcohol) the day before. 12 hours prior, participants cannot eat or participate in vigorous activity.

At each visit, a participant will consume a high-fat meal (8 oz cooked 80/20 ground beef) with a bun high in carbohydrates within 10 minutes. This will be considered time zero. From there, a blood sample will be taken every 2 hours including hour zero until hour 6 (when the visit concludes).

We will look at total cholesterol, LDL, HDL, Triglyceride, and Glucose levels for each blood sample.

Anticipated Results

5 - Lipemic Response After Various Diets

6 - Triglyceride Response to Three Different Mushroom Treatments

7 - Glucose Response to Three Different Mushroom Treatments

The results of the Glucose responses values are expected to be similar to previous studies. The bun that all three burgers will be served on has a large amount of carbohydrates and should be a sufficient enough supply therefore to demonstrate a changes in glucose response, if any are present.

Discussion

If mushrooms are consumed with a high fat meal (hamburger), there should be a beneficial change in post meal fat and cholesterol absorption as well as fat oxidation.

If the results of this study align with our expectations based on previous research, then we will have a better understanding of which mushrooms can be used to maximize this effect. Depending on how significant the change is for each mushroom, S and WB, we can draw different conclusions accordingly. There is a possibility that this study could yield results not concurrent with previous data but either way further study is required and our experiment should help provide a direction for that continuing research.

The information obtained from this study could help influence decisions on healthy eating and have further implications on how food recommendations are made.

Funding

University Honors College Research & Creativity Fund
Oakshire Mushroom Farm, Inc.

References


Volk, J. L. et al. (2000). “An ischemic very low fat carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial glycemic response compared with a low fat diet in normal weight, normolipidemic women.” Am J Clin Nutr 72(3): 562-7.

Wolfgang Helfer Ac, Itt-Berlenton PM, and Beelman RB. The bioavailability of ergothioneine from mushrooms (Agaricus bisporus) and the acute effects on antioxidant capacity and biomarkers of inflammation. Preventive medicine 54 Suppl 57-61, 2012.