Modular Snake Robot - Simulation, Design, and Control
Brian Le Floch & Chams Eddine Mballo
Advisor: Dr. Ehsan Esfahani

Motivation
A snake robot consists of several long, slender links connected by motorized joints. Because these robots have many degrees of freedom, they have the potential for greater mobility than traditional wheeled vehicles [1]. By controlling its body into many different shapes, the snake robot is able to use different gaits to traverse rough terrain, climb, and tunnel through pipes.

Potential applications of snake robots are environmental monitoring and search and rescue. For search and rescue missions, the robot can be fitted with a GPS tracking device and a thermal imaging camera to look for survivors of natural disasters. Once a victim is found, their location would be sent to rescue personnel.

Project Goals
A prototype snake-robot will be built to demonstrate the capability of this type of vehicle over flat and moderate terrain. Point to point navigation is to be demonstrated with manual control and completely autonomously.

The prototype will also be designed to be modular. Modular robots are able to reconfigure themselves based on their mission. This could allow the snake-robot to be later reconfigured into a loop, worm, or other form.

Kinematic Simulation
Biologists have identified several modes of locomotion in snakes [2]. One of the simplest is lateral undulation which can be approximated by a sine wave. The motion of a snake robot consisting of links connected by (r-1) revolute joints can be approximated by the formula

\[\theta_i(t) = A \sin(\omega t + \phi) + \delta \]

where the angle, \(\delta \), of each link given as a function of time, \(t \). \(A \) represents the amplitude of oscillation, \(\omega \) is the angular frequency, \(\phi \) is the phase angle and \(\delta \) is the turning angle.

A simulation in MATLAB of lateral undulation for a twenty link snake robot is shown in Figure 1.

\[\theta_i(t) = A \sin(\omega t + \phi) + \delta \]

This conservative simulation reveals that the maximum required torque is about 1.55 Nm.

Dynamic Simulation
The kinematic analysis can be used to determine the torque required to power each revolute joint. The snake robot can be modeled in MATLAB SimMechanics as a series of links connected by revolute joints, as shown in Figure 2.

By applying the kinematic motion of the snake-robot to the dynamic model, the required torque in each joint as a function of time can be solved for. First, the mass of each link and a torsional spring coefficient for each joint must be estimated. Figure 3 shows the required torque in each motor over two cycles.

\[\theta_i(t) = A \sin(\omega t + \phi) + \delta \]

Motor Sizing
After completing dynamic simulation, the robot design process can begin. Given the required torque at the revolute joints, the Dynamixel RX-24F (Figure 4) was chosen.

The RX-24F provides 2.58 Nm of torque and can be linked together in a “daisy chain,” eliminating excess wiring [3].

Structural Design
Custom links, shown in Figure 5, were designed to connect the servo motors. The snake-robot is formed by a chain of identical links connected together. Each link has four passive wheels that reduce friction in the direction of motion while increasing lateral friction, allowing for efficient propulsion by lateral undulation.

As part of the modular design, the snake-robot can be assembled with one or two axes of rotation (Figure 6).

Construction
Each link was created using 3D printing on the Formlabs Form 1 printer, shown in Figure 7.

The RX-24F provides 2.58 Nm of torque and can be linked together in a “daisy chain,” eliminating excess wiring [3].

Figure 8 shows an assembled section of the snake-robot.

Future Work
Several components will be added to the snake-robot over the next month. Transceivers will allow commands to be sent to the robot wirelessly. Also, battery packs will replace the external power source. Unique head and tail structures will be designed and 3D-printed to accommodate these features.

Also, sensors will be added for autonomous control. These will include cameras and range finders in the head and tail pieces. Data from these sensors will be sent wirelessly to the laptop computer and processed in MATLAB by modified control algorithms.

Finally, additional gaits will be analyzed and programmed to allow the snake-robot to travel over moderate obstacles.

Conclusion
Thus far, manual control of a snake-like robot over a flat surface has been successfully completed. Over the next month, demonstration of autonomous control over varied terrain is likely.

References