Membranes With Superhydrophilic Zwitterionic Polymers For Water Purification

Kaipin Huang, Shizhong Zhao, Shawreen Manish Shah and Haiqing Lin

Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, NY 14260, USA

Background:
Increasing need for reusing wastewater due to:
- Population increases rapidly
- Living quality improves
- Excess consume fresh water reserved

Overview

Potential Method: Polymeric Membranes because of:
- High energy efficiency
- Low cost

Reverse Osmosis is a widely-use method in wastewater purification.

Current Membranes limitation and Potential Solution

Limitation: Membrane external and internal fouling after long term run. Fouling reduces the water flux and further reduces the efficiency.

Solution: Hydrophilic coating layer on the surface to reduce fouling.

Approach: Free-standing Membranes

Materials:
- **Solute** (Mass ratio is varied between Zwitterionic Monomer and PEGDA)
- **Solvent** (Mass ratio between Water and Ethanol is kept as 1:1)

Results

Samples:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solute (Monomer+Crosslinker)</th>
<th>Solvent (Water+Ethanol)</th>
<th>Initiator (HCPK) (%)</th>
<th>Get Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PEGDA</td>
<td>0 50 PEGDA (%)</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>1:4</td>
<td>10 40</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>1:3</td>
<td>12.5 37.5</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>1:2</td>
<td>16.7 32.3</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>1:1</td>
<td>25 25</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>2:1</td>
<td>32.3 16.7</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>3:1</td>
<td>37.5 12.5</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
<tr>
<td>4:1</td>
<td>40 10</td>
<td>25 25</td>
<td>0.2</td>
<td>√</td>
</tr>
</tbody>
</table>

Density decreases with increasing ratio of Zwitterionic Monomer

Water Sorption shows the ability the membrane to hold the water molecules. It maximizes at 1:1 ratio.

Conclusion, Future Work and Acknowledge

Conclusion:
- The density of membrane increases with increasing ratio of Zwitterionic Monomer
- Zwitterionic membranes have appropriate Zwitterion inside.
- Zwitterionic membranes have good ability to hold water molecule.

Future Work:
- Evaluate salt diffusivity of some samples.
- Make flat samples for contact angles.
- Measure water permeability.

Acknowledge: