INTRODUCTION

- **Background**
  - Bluetooth is a low-cost, easily configurable data radio link which has been a preferred choice for wireless communication in robotic systems given its simplicity, flexibility and energy efficiency.
  - With the documentation of Application Programming Interfaces (API) and Software Development Kits (SDK), computing languages such as C/C++, MATLAB or Python have been utilized extensively to create Bluetooth interfaces for robot control.

- **Motivation**
  - Short-range wireless controlled robots are useful and desired in various fields.
  - Bluetooth is becoming a standard for wireless communications. Consequently, many commercial devices come with an API and SDKs, encouraging users to control the device with Bluetooth.
  - Combined with the capability of computing languages, Bluetooth technology can be used to build up applications offering a higher level of functionality in robotic systems.
  - Developing Bluetooth interfaces with MATLAB is desirable since MATLAB is a simple and popular computing language.

- **Problem Statement**
  - The purpose of this project is focused on leveraging Bluetooth with MATLAB to communicate and manipulate robotic systems wirelessly. A working example on designing and implementing the remotely controllable robotic system with MATLAB will be demonstrated.

APPROACH

- Sphero (a robotic ball) was chosen as the robotic system to be controlled. Our goal is to control the color of the robot and also command the robot to roll according to a specified trajectory drawn in MATLAB.
- The control scheme are outlined as follow:
  - An implementation is shown in a series of pictures below.
  - **Packet Structures**
    - Following the API, the packets are sent from MATLAB to Sphero in the following byte format:
      - SOP1
      - SOP2
      - DID
      - CID
      - SEQ
      - DLEN
      - <data>
      - CHK
  - Each function has a unique packet framework. The interested functions and their packet structure are listed below:

<table>
<thead>
<tr>
<th>Function</th>
<th>Packet Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set ROB LED Output</td>
<td>DID CID SEQ DLEN RED GREEN BLUE FLAG</td>
</tr>
<tr>
<td>Roll</td>
<td>DID CID SEQ DLEN Speed Heading Heading STATE</td>
</tr>
</tbody>
</table>

ADOPTED SOFTWARE

- **MATLAB**
  - The connection between Sphero and MATLAB was established using the Instrument Control Toolbox in MATLAB, which contains a library of functions for Bluetooth communication.
  - The buttons and sliders incorporated in the GUI are embedded with callback functions, relaying to the source code. A freehand sketch workspace is created to allow users to draw a trajectory for the robot to roll accordingly.

RESULTS

- The implementation is shown in a series of pictures below.
- **DISCUSSIONS**
  - The robotic device (Sphero) was successfully controlled by the implementation of the Bluetooth interface in MATLAB. This project has exhibited the simplicity and capability of MATLAB in robot control over Bluetooth.
  - The significance of numeral systems in Bluetooth communication protocol is demonstrated.
  - The source code used in this project is published on MATLAB Central.

FUTURE WORK

- Developing an interface to control Sphero with Myo (a gesture based Bluetooth device).
- Extracting real-time data from the IMU sensors in Sphero to MATLAB.
- Designing a home based rehabilitation activity for Sphero and Myo.
- Publishing within the Institutional Repository (IR).

ACKNOWLEDGMENT

- This work was done as part of the NSF Research Experience for Undergraduates (REU) and the IEEE Robotics and Automation Society (RAS) project at ARMLAB.
- Special thanks to Professor Venkat Krovi, Mark Tomaszewski, and all the members of the ARMLAB.

Advisor
Dr. Venkat N. Krovi vkrovi@buffalo.edu

Author
Yi Jui Lee yjuilee@buffalo.edu