Using Effective Field Theories To Search For New Physics Beyond the Standard Model

Luke Bodmer, Dr. Doreen Wackeroth
Department of Physics, University at Buffalo, The State University of New York

Introduction

- The goal of this study is to use Effective Field Theories (EFT) to identify likely sources of new physics (NP).
- While the Standard Model (SM) of particle physics is well tested, there is little known about the newly discovered Higgs sector.
- A Higgs-like particle was discovered in 2012 at the Large Hadron Collider (LHC) at CERN independently by the CMS [1] and ATLAS [2] collaborations.
- EFT approaches provide a model-independent method of searching for NP.
- The study is general enough to include any source of new physics, i.e. particles or interactions not part of the SM.
- The motive is to test if the newly discovered particle is indeed the SM Higgs boson or something new.

Effective Field Theories

- The EFT approach lets us look for deviations in the SM Higgs sector that cannot be directly accessed by the LHC.
- The coupling of the Higgs to SM particles has been directly measured. Fig. [3], but there is still room for NP.
- New heavier particles may leave a trace in SM couplings at low energy.
- These effects can be captured by extending the SM Lagrangian using higher dimensional operators O_i [7].

$$L = L_{SM} + \sum c_i \frac{1}{A} O_i + \ldots$$

Fig. 3: Measurement of Higgs couplings at the LHC [8].

- Since L is of dimension 4 the coefficients of O_i require inverse powers of mass A and thus NP is suppressed by this energy scale.

Dimension-Six \mathcal{C}_{WW} Operator

- Suppressed by two powers of the NP scale.
- Affects the Higgs couplings to gauge bosons.
- Vector Boson Fusion (VBF) given by $p + p \rightarrow H_{jj} \rightarrow WW_{jj} \rightarrow ll\nu\nu jj$ (shown in Fig. 4) at the 14 TeV LHC.

Figure 4: Schematic drawing of $p + p \rightarrow H_{jj} \rightarrow WW_{jj} \rightarrow ll\nu\nu jj$.

- We studied the invariant mass distribution of the final state leptons $m_{WW} = \sqrt{(p_t + p_j + p_{lj} + p_{k})^2}$.
- Experimental cuts from [9] were applied to enhance the signal over the background.
- Like sign W’s were used to enhance the signal.

Conclusion

- So far the Higgs particle looks like the SM Higgs Boson.
- More data is needed to find new physics in the Higgs sector at the next run of the LHC in 2015.
- If the Higgs boson that was discovered at the LHC at CERN deviates from the SM Higgs in its coupling to the W boson, we should be able to detect it or more strongly restrict NP at the next run.
- If the data collected for the process $p + p \rightarrow H_{jj} + d d j j$ resembles Figs. 6 or 7, then the EFT tells us to expect new physics in the W boson couplings to the Higgs boson.
- This new physics could come in the form of, for example, a non-standard Higgs boson or unknown heavy particles entering through loops.

References

3. Fermilab Particle Library, 05-0440-01D
6. S. Chatrchyan et al. [CMS Collaboration], arXiv:1312.5533
10. CMS Higgs Search in 2011 and 2012 Data: Candidate Photon-photopion Event (8 TeV), CERN Document Server