A 2008-2012 Case Study: US Visa Applicant Security Screening Wait Time Analysis
Industrial and Systems Engineering, University at Buffalo

Ms. Marie Catalano, Undergraduate Student, mc63@buffalo.edu
Ms. Elizabeth Newell, Undergraduate Student, enewell@buffalo.edu
Mr. John Coles, PhD Student, jbooles@buffalo.edu
Dr. Jun Zhuang, Assistant Professor, jzhuang@buffalo.edu

Abstract
Security screening reduces risk; however, it can also create delays that deter normal applicants and thus, decrease the welfare of the approver. This research studies trends in visa applicants from 2008 to 2012 by comparing two data sets. One data set contains over 5,000 self-reported visa profiles and the other contains millions of US government data points. We show that the number of applicants increases at the beginning of each academic semester, visa type generally does affect wait time, and wait times for most academic majors depend on the number of data points observed.

Background
• Following the tragic events of 9/11/2001, security screening has become more rigorous for applicants in both transportation and immigration systems.
• This research looks into the visa immigration screening process in order to understand the complex process, data trends and that exist between visa types, academic major of the applicant, and the month and number of visas issued.

• In general, a visa is a certificate of permission for a non-citizen who wishes to enter a foreign country; however, it does not guarantee entry into the country.
• The majority of visas issued by the US are nonimmigrant visas and thus we focus here (Figure 1).

Methods

1. Data Collection
2. Data Analysis: Sorted Data
3. Boxplot

• Data Source 1: www.checkee.info
• Over 5,000 self-reported data points from mostly Chinese Applicants, Data from December 2007 to present.

• Data Source 2: www.travel.state.gov/visa/
• Data on: Yearly Visa Issuance and Process/Application Information.

Results

• We created a boxplot with a sampling of academic majors, where the number of data points increases from left to right (Figure 4). We conclude that wait times for academic majors converge to a similar distribution with an increase in the number of data points.

• Lastly, we compared the number of visas issued to the wait times (Figure 5), where we find as the number of visas issued increases, the number of waiting times greater than 60 days decreases.

Future Work
• Modeling screening process using Rockwell Automation Arena Software.
• Distributions could be used to feed robust screening models and multi-stage screening papers.
• Waiting times could be used for server process rates (using Queueing Theory).

References

Acknowledgment
This research was supported by the United States Department of Homeland Security through the National Center for Risk and Economic Analysis of Terrorism Events (CREATE) under award number 2010-ST-061-REV001 and National Science Foundation under award number 1200899 and through the University at Buffalo Center for Undergraduate Research and Creative Activities (CURCA). However, any opinions, findings, and conclusions or recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of Homeland Security, CREATE, NSF or CURCA. This research was also supported by an NSF Research Experience for Undergraduates (REU).