Inhibition of Fatty Acid Binding Protein 5 and 7 Blunts Locomotor Response to Cocaine in Female Mice

Matthew Marion1, John Hamilton1, Antonio Figueiredo1, Steven Gonzalez1, Panayotis K. Thanos1
Martin Kaczocha2, Dale Deutsch3, Samir Haj-Dahmane1

1 Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
2 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
3 Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA

Email: PThanos@rii.buffalo.edu

Introduction

1.1 Endocannabinoids
- The medicinal properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction.
- The endocannabinoid system (ECS) is host to many important physiological functions including depression (Rutkowski and Jachimczuk, 2004), iambicmoto etc., 2010, Umathe et al., 2011, Vuk Stajna et al., 2015), reward behavior (Cataldo et al., 2006), anxiety (Batista et al., 2014), stress (Hill and McEwen, 2010, Hillard, 2014, Gray and Vecchierielli, 2015), and pain-sensation (Hohmann and Sulippe, 2006).
- The ability of the ECS to impact the DA system has become of recent interest in the treatment for addiction.
- CB1 receptors are ubiquitous throughout the brain and are widely distributed in the mesolimbic dopamine circuit, which act as a regulatory mechanism on motivational and emotional processing (Lavizzare and Grace, 2006; Meis et al. 2014; Wang and Lupica, 2014).

1.2 Fatty Acid-binding Proteins
- FABPs are a family of proteins characterized by their ability to bind fatty acids.
- FABPs act as intracellular transporters of endocannabinoids, such as anandamide (AEA), and shuttle them to their point of catabolism (i.e. Fatty Acid amide hydrolase (FAAH) for AEA) (Kaczocha et al. 2009).
- Detection of FABP genes have been shown to effectively raise levels of AEA and other related N-acyethyloleoylamine’s like palmitoylethanolamide (PEA) and oleoylthanolamide (OEA). The same effect has been achieved using the FABP 5/7 inhibitor SBF26 (Kaczocha et al., 2015).
- However, the behavioral effects from targeting FABPs and modifying the ECS have not been well characterized in the literature.

Hypothesis

Genetic deletion and/or pharmacological inhibition of FABP 5/7 will alter reward behavior

Methods

2.1 Animals
- All animals used in the following experiments were of a C57BL/6 background.
- Male and female wild type (WT) and FABP KO (KO) mice were generated as previously described (Matsumata et al., 2012).
- Mice were assigned to groups that were tested for cocaine CPP but were also co-treated with either vehicle or SBF26.
- For locomotor sensitization, male and female WT mice were used.
- Animals were single housed in temperature controlled conditions (22°C) on a reverse light cycle (9:00-21:00). Food and water were provided ad libitum.

2.2 Cocaine Conditioned Place Preference (CPP)
- CPP is a paradigm that tests reward behavior by comparing time spent in an environment which has been paired with a rewarding stimulus versus a control environment.
- We carried out two separate Cocaine CPP experiments, one testing genetic deletion of FABP 5/7 (CPP-1) (Fig 2.2a) and the other to test pharmacological inhibition of FABPs 5 and 7 (CPP-2) (Fig 2.2b).
- After a single day, 15 minute preconditioning session to test for baseline preference, animals underwent 8 consecutive days of conditioning which alternated between vehicle and treatment days (10 mg/kg cocaine and/or 20 mg/kg SBF26).
- Following conditioning, all animals underwent an extinction period which lasted until no preference was observed, which was immediately followed by cocaine-induced reinstatement.

2.3 Locomotor Sensitization
- After analysis, no significant difference was found in locomotor activity between vehicle and cocaine days in the female Coc/SBF26 group, which suggests that SBF26 may blunt the locomotor response to cocaine.
- To investigate this finding further, a 12 day cocaine locomotor sensitization test was conducted.
- All subjects received cocaine, but only half received SBF26 (Fig 2.3a). Two days of vehicle injections were followed by 5 days of cocaine and SBF26 or vehicle injections, and one last day of vehicle injections.

3.1 Cocaine CPP and Genetic Deletion of FABP 5/7 (CPP-1)

3.2 Cocaine CPP and Pharmacological Inhibition of FABPs 5 and 7 (CPP-2)

3.2 Locomotor Activity Across CPP Conditioning (CPP-1 and CPP-2)

3.4 Locomotor Sensitization to Cocaine

Results Continued

3.1 CPP
- All groups showed normal acquisition of cocaine CPP ([t(14) = 4.07, p < 0.001], FABPs 5/7 +/- male; [t(15) = 5.00, p = 0.01], FABPs 5/7 +/- female; [t(17) = 7.94, p < 0.001], FABPs 7/ -/- male; [t(16) = 3.61, p < 0.05], FABPs 5/7 +/- female, Fig. 3.1a).
- Groups also displayed normal reinstatement ([t(16) = 2.59, p = 0.05], FABPs 7/-/ +/- male; [t(15) = 4.93, p < 0.01], FABPs 5/7 +/- female; [t(17) = 6.47, p < 0.001], FABPs 7/-/- male; [t(16) = 2.71, p = 0.05], FABPs 7/-/- female, Fig. 3.1b).

3.2 CPP
- Cocaine place preference was observed in all mice that received cocaine during conditioning ([t(6) = 5.73, p < 0.01], coc/veh male; [t(7) = 4.83, p < 0.01], coc/SBF26 male, [t(7) = 5.14, p < 0.01], coc/veh female, [t(11) = 11.13, p < 0.001], coc/SBF26 female).
- Additionally, male veh/SBF26 animals showed preference for the drug-paired chamber ([t(7) = 2.77, p < 0.05] (Fig 3.2a).
- Cocaine primed-reinstatement of place preference was observed in all groups that received cocaine during conditioning with the exception of the male coc/veh: (t(16) = 2.41, p = 0.01), coc/veh female: (t(15) = 3.18, p < 0.05), coc/SBF26 male: (t(17) = 19.29, p = 0.001), coc/veh female: (t(15) = 2.22, p = 0.05), coc/SBF26 female: Fig. 3.2b).

3.3 Locomotor Activity
- For CPP-1, paired-samples t-tests comparing mean locomotor activity on drug conditioning days to saline conditioning days showed that all four groups displayed cocaine-induced hyperlocomotion ([t(10) = 3.10, p < 0.01], FABPs 7/-/+ male; [t(15) = 4.90, p < 0.01], FABPs 7/ +/- female; [t(15) = 8.17, p < 0.001], FABPs 7/-/- male; [t(16) = 3.34, p < 0.05], FABPs 7/-/- female, Fig. 3.3a).
- For CPP-2, FABPs showed significantly higher mean locomotor activity on drug days in both the Coc/Veh: (t(15) = 3.10, p < 0.01) and Coc/SBF26 groups: (t(15) = 3.63, p < 0.001) compared to vehicle days. In the females however, only the Coc/Veh group showed significantly higher locomotor activity on drug days (t(7) = 5.105, p < 0.01). A two-way ANOVA using sex and group as factors to compare locomotor activity on drug days also found a main effect of group (F(3,84) = 10.126, p < 0.001) and sex (F(1,84) = 7.570, p = 0.01). Holm-Sidak comparisons showed a significant difference between sexes within the veh/SBF26 group as well, with the females showing lower activity (Fig. 3.3b).

3.4 Locomotor Sensitization
- Two-way RM ANOVAs using group and day as factors showed that SBF26 had no significant effect on cocaine locomotor sensitization in male (F(1,110) = 9.0, p < 0.05; Fig 3.4b) or female (F(1,110) = 1.85, p = 0.35; Fig 3.4b) wild type mice. However, while the male data are nearly identical during sensitization, there was an apparent delay in the increase of locomotor activity seen in the female SBF26 group. Holm-Sidak post-hoc test showed this was only significant on day 5, and seemed to normalize towards the end of the experiment.

Summary

4.1 Genetic Deletion of FABP 5/7
- This works expands on previously published work on the role of FABPs and FABP7 inhibition on reward and locomotor behavior (Thanos et al., 2016).
- Based on our results, FABP 5/7 deletion appears to have no effect on acquisition of CPP or cocaine-induced hyperlocomotorization.

4.2 Pharmacological Inhibition of FABP 5 and 7
- In contrast to work previously done by our lab with SBF26 which was administered 50 minutes prior to CPP conditioning, the results of this study suggest that SBF26 may have rewarding properties depending on time of administration (90 minutes prior) (Thanos et al., 2014). SBF26, otherwise does not appear to have an effect on CPP acquisition or cocaine-primed reinstatement of preference.
- Furthermore, the results of our locomotor sensitization experiment suggest that SBF26 may dampen the locomotor response of cocaine administration, a finding that warrants further investigation.

References


Figure 2.2a

Figure 2.2b

Figure 3.1a

Figure 3.1b

Figure 3.2a

Figure 3.2b

Figure 3.3a

Figure 3.3b

Figure 3.4a

Figure 3.4b