Antidepressant Regulation of Macrophage-derived TNF Production

Allen J. Hoste, Zachary M. LaMacchia, Tracey A. Ignatowski, PhD
University at Buffalo, Department of Pathology and Anatomical Sciences

Abstract

The role of the cytokine tumor necrosis factor-α (TNF) has been well established in neuropathic pain and depression, two often comorbid conditions that are associated with chronic inflammation. Antidepressant drugs have been found to be effective in treating these conditions and in reducing brain-derived TNF, but the effect of these drugs elsewhere in the body is poorly characterized. This study seeks to determine the effects of antidepressant drugs on macrophage-derived TNF production and elucidate whether the macrophage inflammatory state influences these effects. This was studied using peritoneal macrophages isolated from Sprague-Dawley rats that were exposed to various concentrations of different classes of antidepressants, with inflammation simulated using lipopolysaccharide. It was found that antidepressants regulate macrophage-derived TNF production in a gender, inflammation, and dose dependent manner. These findings can have implications in elucidating an additional mechanism of antidepressant action and determining pharmacological differences between genders.

Methods and Materials

- Male and female Sprague-Dawley rats (125-150 g, Envigo) were housed in the UB-Laboratory Animal Facilities.
- Animals were given food and water ad libitum and maintained on a 12 h light/dark cycle.
- Peritoneal exudate cells were collected immediately after decapitation via peritoneal lavage and MΦs isolated via adhesion (2 hrs at 37°C, 95%O2/5%CO2).
- MΦs were exposed to antidepressants (desipramine, amitriptyline, bupropion) at 10⁻³M, 10⁻⁵M, and 10⁻⁷M.
- Inflammation was simulated in vitro by the addition of lipopolysaccharide (LPS; 30 ng/mL).
- Incomplete RPMI-1640 with glutamine was used for all incubations, drug, and LPS dilutions.

Results

- Percent changes were calculated by comparing TNF levels of each sample with either a no LPS group (for non-inflammatory state) or an LPS only group (for inflammatory state).
- Male rat MΦs demonstrated a flipped response to antidepressants between non-inflammatory and inflammatory states. The relationship between inflammatory state and antidepressant response was not as clear in female rat MΦs.

Discussion

- The influence of antidepressants on MΦ-derived TNF production was found to be regulated differently depending on gender, inflammatory state, and drug concentration.
- These findings suggest an additional mechanism of action of antidepressant drugs. These drugs are used in both depression and neuropathic pain, both of which are connected to an enhanced systemic inflammatory state.
- The differential regulation based on inflammatory state may also suggest a possible unintended effect of antidepressant treatment: the inhibition of inflammation in non-inflammatory environments.
- The gender-specific regulation further supports the pharmacological differences between the genders, an important concept in drug design and testing.

Future Experiments

- A larger number of animals will be tested to perform statistical analysis of the data.
- The in vitro model of inflammation with LPS will be supported through the use of an in vivo model of systemic inflammation by using the Chronic Constriction Injury model of neuropathic pain in addition to LPS.
- A fourth group of antidepressants, the selective serotonin reuptake inhibitors, will be tested.

Funding Sources

- Funded through the University Honors College Research and Creativity Fund (A.H.) and discretionary funds from the Department of Pathology and Anatomical Sciences (TAI).

References

11. Elyse Lauren Colon: A mechanism of antidepressant action is associated with decreasing levels of necrosis factor-α (TNF) in the brain. University at Buffalo, 2014.