Acute Effects on Satiety from White Button and Shiitake Mushroom Powder Supplementation in a High Fat Meal

Robak TJ1, Talal LA1, Morris MJ2, Williams BT3, Marsales H2, Horvath PJ2.
1 - School of Medicine and Biomedical Sciences, 2 - Department of Exercise and Nutrition Sciences, 3 - Department of Physiology and Biophysics
University at Buffalo – Buffalo, NY

Abstract

Background: The current trend of rising obesity leads to an increase in cardiovascular disease and dyslipidemia. One of the factors involved with this trend are diets high in fat. Supplementing high-fat meals with bioactive compounds may be an effective way to limit the negative consequences of such a diet. Mushrooms contain high levels of fungistatins and β-glucans which are thought to be involved in the primary mechanism for improved postprandial lipemia. Mushroom supplementation may have effects on acute satiety which could dictate eating habits.

Purpose: To examine the acute effects on satiety by adding shiitake and white button mushroom powder to a high-fat meal.

Methods: Three high-fat meals were administered to 13 healthy subjects (6 males and 7 females; 24 ± 2 y; 20±6 % body fat, 57.1±11.5 kg fat free mass) in a double blinded, randomized design. Each meal (Control, White Button, Shiitake) (SH) consisted of an 8oz cooked ground beef patty and a bun (819 kcal, 47g fat) with no mushroom powder or 1g of WB or 14 g of SH dried mushroom powder. Dietary intake on the day before testing was similar among subjects (2079 ± 791 kcal). Subjects were fasted and avoided vigorous exercise on the day prior to testing. Satiety was measured using a Likert visual analog scale every 2 hours for 6 hours following each meal. Blood from an indwelling catheter was also taken every 2 hours to measure plasma glucose and lipids. The effects of each meal were determined by measuring differences between meals.

Results: A more gradual decline in satiety from hour 2 to 6 was observed for treatments with mushrooms as compared to the control treatment. With the control burger there was a significant decline in satiety between hour 4 and 6 (P = 0.01) that was not observed with either mushroom powder. Plasma glucose was negatively correlated with satiety values in all groups (P = 0.02). However, there was no relationship between plasma triglycerides and satiety.

Conclusion: Adding mushroom supplements to a high-fat meal does not appear to change subjective satiety from 0 to 4 hours after consumption. However, between hours 4 and 6 after consumption, subjects were likely to have a longer feeling of fullness with mushrooms than without mushrooms. Plasma triglycerides levels did not predict satiety levels while plasma glucose was shown to be a better predictor of satiety. Using mushroom supplementation may limit the rise in felt hunger following a meal and could lead to less food consumption overall.

Background

The current trend of rising obesity levels and poor dietary choices have led to an increase in the incidence of chronic diseases in the United States, including cardiovascular disease (CVD). Few studies have been conducted that look at the consequences of such a diet. Mushrooms contain high levels of bioactive compounds, which are thought to be a significant mechanism for reducing cholesterol absorption and for increasing satiety. Important bioactive compounds currently being extracted from these mushrooms, which are thought to have lipid lowering properties are beta glucans (Lentinan, an antitumor adjuvant), Eritadenine (Hypocholesterolemic Agent and Vitamin D precursor), Ergothioneine, an anti-oxidant in mushrooms, may have a role in the reduction of postprandial triglyceride levels.

Methods

All subjects received a meal with only meat to serve as a control to test for a ‘normal’ metabolic response. 13 participants subjects (6 males and 7 females, 24 ± 2 y, 20±6 % body fat, 57.1±11.5 kg fat free mass) were randomized into groups receiving either WB then SH (Group 1) or SH then WB (Group 2) treatments for their second and third lab visits. Subjects maintained normal dietary habits (no caffeine or alcohol) the day before, 12 hours prior, participants could not eat or participate in vigorous activity.

Results

Figure 1. Effect of Mushroom Powder on Hunger

Figure 2. Effect of Mushroom Powder on Postprandial Glycemia

Figure 3. Relationship between Plasma Glucose and Hunger

Discussion

The present study demonstrates that the incorporation of certain mushroom powders in a high fat meal did have an impact on postprandial satiety. The significant drop in satiety from hour 4 to hour 6 by the control group suggests that the consumption of mushrooms has a longer lasting impact on satiety than consuming a high fat meal without mushroom powder. This is a logical conclusion considering the fiber content and beta-glucans, contained in the mushrooms, and their ability to increase the water content of the mushroom fortified burgers.

Though not a primary aim of the study, an unexpected negative correlation between satiety and serum glucose was also observed. The glycemic index of the foods in the meal was high but glycemic load of each meal was low and did not result in a significant postprandial glycemic response. Therefore, high plasma glucose levels were never reached in the postprandial phase which would limit the extent that glucose could modify satiety/hunger.

Blood glucose levels appeared to be unaffected by mushroom supplementation at the 2-hour time interval of blood testing. However, a normal physiologic glucose level rise may have occurred within the first 2 hours and therefore would not show in our experiment. Further study may be required to better understand and differences among mushroom supplements and their effects on blood glucose levels.

This study contained some limitations. Some atypical postprandial glycemic and lipemic responses were observed which led to those subjects being removed from the data set. Additionally, since blood was drawn only every 2 hours, it is possible that postprandial glycemia occurred after the blood draw at hour zero and resumed fasting levels by the next blood draw at hour 2. Therefore, any differences between mushrooms could not be detected.

This study has left numerous questions and future considerations for continuing research. Other directions include looking long term use of mushroom powders incorporated into other high fat foods, and their effect on glycemia and cholesterol synthesis, based on frequent exposure. One could re-conduct the study with one mushroom group at varying quantities to establish a dose dependent relationship. Additionally, the study could be re-conducted with a more uniform group of subjects. Also, further study is needed to understand the mechanisms underlying the differences between these mushrooms. Attempting to further understand how the dietary fibers such as beta glucans in the mushroom powder interact with and affect the uptake of other components of the meal may be areas to focus on.

Figure 1. Change in Satiety from premeal values. Mean ± SEM subjective satiety (n=13). a,b within Control, different letters indicate statistical difference (p<0.01).

Figure 2. Mean SD plasma glucose . Black line represents white bread glycemic values added for reference (KA Háltonen 2006).

Figure 3. Relationship between Plasma Glucose and Hunger

Objectives

1. Determine if consumption of Shiitake (SH) and White Button (WB) Mushrooms with a high fat meal alters feelings of satiety.
2. Determine if consumption of Shiitake (SH) and White Button (WB) Mushrooms with a high fat meal affects postprandial glucose blood levels.
3. Correlate blood nutrient levels with satiety after three different high fat meals.

Methods

Each participant was randomly assigned to one of these two groups.

Group 1
1. Mushroom Absent
2. White Button
3. Shiitake

Group 2
1. Mushroom Absent
2. Shiitake
3. White Button

Ergothioneine
Powerful Antioxidant

Eritadenine
Hypocholesterolemic Agent

Ergosterol
Hypocholesterolemic Agent and Vitamin D precursor

References


Shiitake mushroom (Lentinula edodes) is a hypcholesterolemic agent. This study demonstrated that Shiitake mushroom powder supplementation may have effects on acute satiety which could dictate eating habits. Although the glycemic index of the foods in the meal was high, the glycemic load of each meal was low and did not result in a significant postprandial glycemic response.