Biodegradable Polymer-Drug Conjugates for pH-Sensitive Anti-Cancer Drug Delivery

Meghan Capeling, Alex Comisson, Patrick Krohl, Zachary Manzer

Faculty Mentor: Dr. Chong Cheng

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York

Abstract

Polymer-drug conjugates represent a selective and novel chemotherapy approach for cancer treatment. Polycaprolactone and polylactide were chosen as the building blocks for drug delivery systems because of their biodegradability. Accordingly, two ester-based monomers with an acetylene or allyl group were designed to allow for the attachment of anti-cancer drugs and solubility-enhancing zwitterionic groups with the resulting polymers. The anti-cancer drugs, doxorubicin and paclitaxel, were conjugated with the polymer chains using pH-sensitive linkages. Novel “click chemistries” were utilized throughout the synthesis of the polymer-drug conjugates. Precursors of the conjugates have been obtained with sufficient yields and characterized using nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC).

Introduction

Many anti-cancer drugs are hydrophobic small molecules that are poorly dissolved but can be excreted quickly by the kidneys. Conjugating the drugs with polymers can prevent the kidneys from eliminating the drug, and functionalization of the systems with hydrophilic groups can promote drug solubility. The polymer-drug conjugates can accumulate at tumor sites due to the enhanced permeability and retention (EPR) effect. The pH-sensitive linkages in the conjugates further enable the selective drug release in tumor tissues for effective treatment and to prevent adverse side effects on healthy tissues. Therefore, the overall approach allows greater selectivity and lower side effects.

Methods

Scheme 1: Synthesis of Polycaprolactone-Doxorubicin Conjugates

Scheme 2: Synthesis of Polylactide/Polycaprolactone-Paclitaxel Conjugates

Previous Work

Sample Results

Acknowledgements

This project would not have been possible without the support of the National Science Foundation (NSF; DMR-1206715), the guidance of Dr. Chong Cheng, and the assistance of PhD students Mohammad Alaa, Amin Jafari, Haotian Sun, and Dr. Riwei Xu.