P38 MAPK, A Potential Therapeutic Target for Multiple Sclerosis Treatment

Kansho Abiko\(^1,2\), Marilena Palmisano\(^1\), Edward Hurley\(^1\), Ana Cuenda\(^3\), M. Laura Feltri\(^1\)

1 Hunter James Kelly Research Institute, University at Buffalo, NY, USA
2 Undergraduate Student in Department of Biochemistry, University at Buffalo, NY, USA
3 Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain

Multiple Sclerosis (MS)

<table>
<thead>
<tr>
<th>MS Types</th>
<th>MS Causes</th>
<th>MS Symptoms</th>
<th>MS Pathology</th>
<th>Treatments</th>
<th>Directions</th>
</tr>
</thead>
</table>
| Relapsing-remitting MS | Unknown | Fatigue, Fatigue, Cognitive impairment, Depression, Unstable mood | Inflammation is a hallmark of MS, and P38 MAPK plays a role in regulating inflammatory responses. | Disease-modifying agents:
- Teriflunomide
- Interferon-1α
- Interferon-1β
- Glatiramer acetate
- fingolimod
- Mitoxantrone
- Dimethyl fumarate
- Natalizumab | No available disease-modifying agents
Only medications that help to manage the symptoms |
| Progressive MS | Risk factors | Venous: Hemorrhagic, Optic neuritis, Diabetic, Speech: Dysarthria | Blood-brain barrier disturbance is a significant feature of MS, and P38 MAPK involvement has been reported. | Medication that help to manage the symptoms |

Introduction - P38 MAPK

The p38 mitogen-activated protein kinase (MAPK) family is important in response to extracellular signals, expressed ubiquitously throughout the body. It consists of four isoforms: p38α, p38β, p38γ, and p38δ.

Results - P38γ in Myelination

P38γ knockout mouse brains show earlier myelination in the corpus callosum, and other white matter areas (data not shown).

Future Directions

- P38γ-deficient mouse brains show earlier myelination.
- P38γ expression is low during active myelination of the brain.
- P38γ mRNA level is also up-regulated in white matter lesion of MS patients.
- P38γ might be an inhibitor of oligodendrocyte differentiation and/or myelination and also possibly blocking remyelination in MS patients.

Conclusion

- P38γ-deficient mouse brains show earlier myelination.
- P38γ expression is low during active myelination of the brain.
- P38γ mRNA level is also up-regulated in white matter lesion of MS patients.
- P38γ might be an inhibitor of oligodendrocyte differentiation and/or myelination and also possibly blocking remyelination in MS patients.

Inflammation

- Genetics: Mutation in genes involved in the human leukocyte antigen (HLA) system, located on chromosome 6.
- Geography: Sun exposure is inversely related to the risk for MS development.
- Infections: Infected by certain viruses, such as Epstein-Barr virus and others, can raise the risk of developing MS.

MS Symptoms

- **Fatigue**
- **Cognitive impairment**
- **Depression**
- **Unstable mood**

MS Pathology

- **Inflammation**: In the relapsing-remitting stage of MS, initial tissue injury is associated with CD8+ T cells and/or activation of resident microglia attacking myelin which is made by oligodendrocytes. Invasion of T cells, B cells and macrophage through damaged blood-brain barrier causes further myelin deconstruction.
- **Blood-brain barrier (BBB) disturbance**: A profound damage to the BBB is caused by initial inflammation. BBB rupture is also observed in progressive MS, but its correlation with inflammation is not well understood.
- **Plaques**: Completely demyelinated regions, demyelinated axons that are embedded in astrocitoc scar tissue, and massive loss of axons appear as plaques.

MS Causes

- Unknown
- Risk factors

MS Types

- Relapsing-remitting MS
- Progressive MS

MS Symptoms

- Venous: Hemorrhagic, Optic neuritis, Diabetic
- Speech: Dysarthria

MS Pathology

- Disease-modifying agents:
 - Teriflunomide
 - Interferon-1α
 - Interferon-1β
 - Glatiramer acetate
 - Fingolimod
 - Mitoxantrone
 - Dimethyl fumarate
 - Natalizumab

Treatments

- Medication that help to manage the symptoms

Future Directions

- No available disease-modifying agents
- Only medications that help to manage the symptoms

Results - P38γ in Myelination

Microarray data from Bruce Trapp lab

Conclusion

- P38γ-deficient mouse brains show earlier myelination.
- P38γ expression is low during active myelination of the brain.
- P38γ mRNA level is also up-regulated in white matter lesion of MS patients.
- P38γ might be an inhibitor of oligodendrocyte differentiation and/or myelination and also possibly blocking remyelination in MS patients.